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Abstract—Manual touch interactions elicit widespread skin vi-
brations that excite spiking responses in tactile neurons distributed
throughout the hand. The spatiotemporal structure of these popu-
lation responses is not yet fully understood. Here, we evaluate how
touch information is encoded in the spatiotemporal organization
of simulated Pacinian corpuscle neuron (PC) population responses
when driven by a vibrometry dataset of whole-hand skin motion
during commonly performed gestures. We assess the amount of
information preserved in these peripheral population responses
at various spatiotemporal scales using several non-parametric
classification methods. We find that retaining the spatial structure
of the whole-hand population responses is important for encoding
touch gestures while conserving the temporal structure becomes
more consequential for gesture representation in the responses
of PCs located in the palm. In addition, preserving spatial
structure is more beneficial for capturing gestures involving
single rather than multiple digits. This work contributes to
further understanding the sense of touch by introducing novel
measurement-driven computational methods for analyzing the
population-level neural representations of natural touch gestures
over multiple spatiotemporal scales.

Index Terms—Haptic neuroscience, Natural touch gestures,
Tactile information encoding, Neural spiking classification.

I. INTRODUCTION

Touch interactions performed with the hands elicit mechani-
cal vibrations that propagate throughout the skin [1]–[5]. These
propagating vibrations facilitate touch perception by exciting
responses in widespread populations of sensory neurons [6]–
[8], including those innervating Pacinian corpuscles (PCs). PCs
have large receptive fields [9] and are exquisitely sensitive
to vibrations elicited by touch interactions such as fine
manipulation, texture scanning, and tool use [10]–[12]. While
spiking responses of isolated PCs elicited by laboratory stimuli
are thoroughly characterized [13]–[15], the responses of PC
populations throughout the hand are not well understood.
In addition, few studies have examined PC responses to
propagating vibrations originating at locations far removed
from the PC locations. This is partly due to experimental
limitations that preclude the measurement of signals from PC
populations in an unconstrained hand [16].

This work was supported by a Link Foundation Modeling, Simulation, and
Training Fellowship to N.T., the German Research Foundation DFG Project
EXC 2050/1, 390696704, for the TU Dresden CeTI Cluster of Excellence to
Y.S., and U.S. National Science Foundation award 1751348 to Y.V.

Previous research has underscored the significance of in-
vestigating population encoding in understanding the sense
of touch [17], [18]. Numerous studies have characterized the
responses of tactile neuron populations to controlled laboratory
stimuli, examining parameters such as intensity [19], [20],
frequency [21], textural vibration content [22]–[24], and edge
orientation [25], and demonstrated that touch information is
encoded at various spatial and temporal scales. To explore the
spatiotemporal structure of information encoded in population
responses, several investigations, including those in other areas
of sensory neuroscience, have utilized stimulus discrimination
tasks conducted via metric space and classification methods
[21], [25]–[31]. However, our understanding of information en-
coding within the spatiotemporal organization of PC population
responses in natural contexts remains limited.

In this paper, we employ a novel measurement-driven
approach for simulating the responses of a spatially-distributed
population of PCs in the hand during natural touch interactions.
Leveraging existing vibrometry measurements of whole-hand
skin motion collected during commonly performed tapping,
sliding, and grasping gestures involving contact at the digits
[1], [2], we drive an ensemble of neuron models developed
in prior research [32]. We then utilize several machine
learning techniques to investigate the spatiotemporal encoding
of information generated by these touch interactions in PC
population responses. We find that preserving spatial structure
in whole-hand PC responses is beneficial for capturing gesture-
specific information, particularly for single-digit gestures, while
retaining spike timing becomes more informative for gesture
representation by PCs located in the palm. The findings and
methodologies presented here may contribute to knowledge
about the spatiotemporal organization of touch information in
PC population responses and may inform the engineering of
new haptic or robotic technologies that reflect attributes of
tactile sensing and perception in the human hand [33]–[36].

In the following section, we describe our methods for
integrating spiking neuron models [32] with mechanical
measurements [1], [2], computing population spiking response
representations by multi-scale spatiotemporal integration, and
analyzing information content preserved by these represen-
tations using machine-learning techniques. We then discuss
and analyze the results of these studies and their implications
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Fig. 1. A) Placement of the accelerometer array on the dorsal surface of a participant’s hand [1], [2]. B) Number of PCs uniformly distributed within each
region of the hand, derived from [37]. C) Skin displacements (top) and corresponding PC spiking responses (bottom) at selected sensor locations during one
trial of the Slide II gesture. D) Shown for each of the 13 performed gestures: number of spikes produced by each PC in the hand averaged across all trials of
the gesture (left), an image of a participant executing the gesture (top right), and RMS skin displacements elicited across the whole hand during the gesture
(bottom right). E) RMS skin accelerations elicited across the dorsal (left column) and volar (right column) surfaces of the hand during one trial of the Tap I
gesture (top row) and one trial of the Tap II gesture (bottom row), normalized by the maximum skin acceleration produced during each trial [2].

for touch information encoding in PC population responses.
We conclude by synthesizing these findings and discussing
their significance for haptic science and engineering and
opportunities for future research.

II. METHODS

Using the methods detailed in this section, we sought to
quantify how much touch gesture information was retained
in PC population responses at different spatial and temporal
scales. PC population responses were generated by driving
physiologically-informed neuron models adapted from previous
research [32] with an existing vibrometry dataset of skin motion
measurements collected during everyday touch interactions [1],
[2]. To modify the spatiotemporal structure of these population
responses, we summed spiking data over spatial and temporal
bins of different sizes, allowing us to capture touch gesture
information at multiple spatiotemporal scales. We then used
machine learning classifiers to analyze how much gesture
information was preserved in these spatiotemporal response
representations.

A. Whole-Hand Skin Vibrometry Data
Our methodology leveraged an existing dataset of whole-

hand skin vibration measurements captured in a prior ex-
periment during manual touch gestures performed by four
participants using an array of 30 miniature accelerometers
[1], [2]. The accelerometers were worn on the dorsal surface
of the hand during data collection, allowing unobstructed
movement during gesture execution (Fig. 1A). Accelerometers
were placed at the same relative anatomical positions on each
hand, standardizing their locations across participants. The
gestures were comprised of commonly performed manual
interactions (Fig. 1D). Each gesture was repeated for either
100 (grasping gestures) or 200 (all other gestures) trials. The
patterns of skin vibrations elicited during gestures involving
fingertip movement were found to be similar between the volar
and dorsal surfaces of the hand in a prior investigation (Fig. 1E)
[2], allowing the utilization of the dorsal skin oscillation
measurements as an approximation of volar skin motion.

Data from each trial were time-aligned with respect to the
instant of surface or object contact, truncated to a duration of
250ms, and band-pass filtered between 20-500Hz. Accelera-
tion measurements were converted to displacement via double
integration. To facilitate analysis, the three-axis data from
each sensor were independently projected to a principal axis
of oscillation through principal component analysis (PCA).
The projection maximally preserved variance in the data.
The processed data from each trial consisted of time-varying
signals of 250ms duration sampled at 2.0 kHz from each of 30
accelerometers, yielding 15000 samples per trial. The dataset
consisted of 4564 trials in total.

B. Vibrometry-Driven Neural Simulations

The processed skin displacement signals were used as inputs
to a population of K physiologically-informed PC neuron
models [32] that produced spiking responses for each trial,
where K = 490 unless otherwise specified (Fig. 1C, D). The
highly stereotyped and reproducible responses of PCs were
captured with high fidelity by the utilized neuron models, which
were trained and extensively validated on microneurography
data collected from macaque monkeys in prior research [19].
PCs were distributed across a 3D hand model according to a
recent MRI study on PC distribution in the glabrous skin that
dictated the number of PCs that were uniformly distributed
within each hand region (Fig. 1B) [37]. Skin displacements
were interpolated to each PC location using an inverse distance
filter informed by biomechanical measurements and described
in a previous publication [2], with distance calculated on the
dorsal surface of the 3D hand model.

C. Spatiotemporal Spike Count Representations

To analyze the PC population responses at various temporal
scales, six time bin widths, ∆t, were defined in decreasing
order of preserved temporal resolution. These widths were
∆t ∈ {5, 10, 25, 50, 125, 250}ms, and the number of time
bins was calculated as N = 250

∆t = {50, 25, 10, 5, 2, 1}. To
analyze the PC population responses at various spatial scales,
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two distinct collections of sets of spatial bins were defined,
with one collection encompassing the whole hand (WH) and
the other encompassing only the palm (P). A set of spatial bins
was defined as a set of M non-overlapping contiguous spatial
regions in the hand based on anatomical regions defined in
Fig. 2A. To analyze the whole-hand PC population responses,
four sets of spatial bins, each denoted as s, were defined in
decreasing order of preserved spatial resolution, as illustrated
in Fig. 2B. They were as follows:

1) s = WH1, M = K: Each PC in the hand (K = 490,
unless otherwise specified),

2) s = WH2, M = 25: the distal phalanges (DP), medial
phalanges (MP), proximal phalanges (PP), metacar-
pophalangeal joint regions (MCP), and metacarpal (MC)
regions corresponding to each digit (I-V) and the carpal
(C) region of the palm,

3) s = WH3, M = 6: each digit (I-V) and the palm,
4) s = WH4, M = 1: and the whole hand.
To analyze PC population responses from the palm, five sets

of spatial bins, each denoted as sp, were defined in decreasing
order of preserved spatial resolution, as illustrated in Fig. 2C.
They were as follows:

1) sp = P1, M = 162: Each PC in the palm,
2) sp = P2, M = 11: the MCP and MC regions correspond-

ing to each digit (I-V) and C,
3) sp = P3, M = 3: the Palm {I,II}, Palm III, and Palm

{IV,V} regions,
4) sp = P4, M = 3: all MCP, MC, and C regions without

digit separation,
5) sp = P5, M = 1: and the whole palm.
Using these bins, the PC population spiking response for

each trial was quantified as a binned spike train matrix B of
size M × N , where M was the number of spatial bins and
N was the number of time bins. The element Bij contained
the number of spikes generated in time bin j by PCs situated
in spatial bin i. This representation allowed us to control
the spatiotemporal resolution of the population responses by
manipulating the bin sizes without employing dimensionality
reduction methods that would complicate the analysis.

The sets of spatial bins ranged from preserving individual
neuron identity of spikes (s = WH1 or sp = P1) to aggregating
spikes across the whole PC population (s = WH4 or sp = P5),
as shown for one trial of the Grasp All gesture (Fig. 2D).
Similarly, the time bin widths varied from capturing detailed
spike timing (∆t = 5ms) to summing spike counts over the
entire trial (∆t = 250ms), as demonstrated for one trial of the
Tap V gesture (Fig. 2E). These variations in spatiotemporal
representations impacted the degree to which differences in PC
population responses evoked by various natural touch gestures
were captured.

D. Evaluation of Touch Information in Spatiotemporal Spike
Count Representations

We employed four non-parametric classification methods to
elucidate the amount of information encoded in the spatiotem-
poral structure of PC population responses elicited by natural
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Fig. 2. A) Anatomically-based hand regions defined for spatial resolution
analyses. Within the digits, DP are distal phalanges, MP are medial phalanges,
and PP are proximal phalanges. Within the palm, MCP are metacarpophalangeal
joint regions, MC are metacarpal regions, and C is the carpal region. B) Four
sets of spatial bins (s = WH1-WH4) defined for whole-hand analyses where
M is the size of each set. Each PC in the hand is considered a separate
spatial bin in WH1. Each spatial bin in WH2-WH4 is outlined by solid black
lines. C) Five sets of spatial bins (sp = P1-P5) defined for analyses in the
palm where M is the size of each set. Each PC in the palm is considered
a separate spatial bin in P1. Each spatial bin in P2-P5 is outlined by solid
black lines. Regions outlined by light gray lines are not included in the spatial
bins. Regions indicated by the star label (*) in P4 are part of the same spatial
bin. D) Binned spike train matrices representing a PC population response
elicited by one trial of the Grasp All gesture shown across all sets of whole-
hand spatial bins s = WH1-WH4 when ∆t = 25ms. E) Binned spike train
matrices representing a PC population response elicited by one trial of the
Tap V gesture shown across all time bin widths ∆t when s = WH1.

touch gestures. These methods included a linear kernel support
vector machine (SVM), a k-nearest neighbors classifier (kNN),
a peristimulus spike timing histogram (PSTH) template-based
classifier (PTB) [26], [27], and an average pairwise distance
classifier (APD). These techniques were applied to binned spike
train matrices to analyze the extent to which PC population
responses retained information across spatiotemporal scales.

For the SVM and kNN classifiers, reported classification
accuracies were averaged over a 10-fold cross-validation
procedure with a random 90-10 train-test split. For the SVM
classifier, each feature was standardized using the mean and
standard deviation calculated from the training dataset. For
kNN, k = 5 was chosen based on parameter selection during
pre-testing. The kNN and APD classifiers utilized a distance
matrix composed of pairwise Euclidean distances between
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binned spike train matrices for all trials. For the PTB and
APD classifiers, results were averaged over a leave-one-out
cross-validation procedure where each trial was successively
designated as the test set while the rest of the dataset comprised
the training set. For the PTB classifier, template PSTHs
were calculated for each gesture by taking the element-wise
average over binned spike train matrices from all trials of
the gesture, excluding the test trial. The test trial was then
classified as the gesture corresponding to the PSTH for which
the pairwise Euclidean distance was the smallest. The APD
classifier classified each test trial as the gesture corresponding to
the training samples for which the average pairwise Euclidean
distance to the test trial was the smallest.

III. RESULTS: SPATIOTEMPORAL ORGANIZATION OF
TOUCH INFORMATION IN PC POPULATION RESPONSES

The responses of tactile neuron populations encode infor-
mation about mechanical stimuli in both the spike timing and
the identity of neurons generating each spike [21], [22], [24],
[25]. Here, we presented the results of our investigation on
how information about natural touch gestures was preserved in
spike count representations at multiple spatiotemporal scales
and within hand regions away from the contact location. We
quantified the captured information through the overall and
per-gesture classification accuracies achieved by several non-
parametric classification methods.

A. Varying the Spatiotemporal Resolution of Spike Count
Representations

1) Whole-Hand PC Population Responses: Our analysis
showed that modifying the spatial resolution of spike count
representations had a greater impact on touch gesture classifica-
tion than modifying the temporal resolution. When individual
neuron identity was preserved and temporal structure eliminated
(s = WH1, ∆t = 250ms), the average classification accuracy
was 75% for SVM, 73% for kNN, and 46% for PTB and
APD (Fig. 3A). On the other hand, when precise spike timing
was preserved and spatial structure eliminated (s = WH4,
∆t = 5ms), the average classification accuracy dropped
significantly: by 33% for SVM, 28% for kNN, 15% for
PTB, and 18% for APD. Additionally, the median range of
classification accuracies across changes in spatial resolution
was greater than that across changes in temporal resolution by
a factor of at least 2 for all classifiers (Fig. 3B). When some
spatial structure was preserved (s = WH1, WH2, or WH3), all
classifiers performed best at ∆t = 25-50ms, suggesting that
an intermediate level of temporal integration was beneficial in
accommodating variations in touch information across trials.

While the goal of this research was not to analyze the
suitability of classification methods for this gesture discrimina-
tion task, the findings showed that SVM performed best for all
spatiotemporal representations except when s = WH4, where it
was outperformed by kNN for ∆t ≤ 25ms. On the other hand,
PTB and APD achieved the lowest average classification accu-
racies except at coarse spatiotemporal resolution (∆t ≥ 125ms
and s = WH4), demonstrating that they were more sensitive
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Fig. 3. A) Matrix of average classification accuracies achieved using whole-
hand PC responses for all combinations of ∆t and s by all classifiers. B)
Median range of classification accuracies using whole-hand PC responses
across changes in ∆t (dark gray) and across changes in s (light gray) for all
classifiers. C) Classification accuracy as the total number of PCs in the hand
K varies for all ∆t when s = WH1. D) Classification accuracy as the total
number of PCs in the hand K varies for all s when ∆t = 25ms. C) and
D) are shown for both SVM (left) and kNN (right). E) Average classification
accuracies using PC responses from the whole hand (All), from only the
digits (Digits), and from only the palm (Palm) for all ∆t. Shown for SVM
(left) and kNN (right). F) Decrease in average classification accuracy from
using whole-hand PC responses to using PC responses from the palm for all
∆t. Shown for SVM (left) and kNN (right). There was no spatial integration
performed for E) and F); each PC was a separate spatial bin. G) Matrix of
average classification accuracies achieved using PC responses from the palm
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than other methods to small perturbations between trials. The
remaining analyses focus on SVM and kNN, as they performed
better than PTB and APD in almost all cases and are sufficient
to represent our overall findings, which are consistent across
all classifiers. Additionally, as the results were robust to scaling
of the PC population size (Fig. 3C, D), K = 490 was utilized
for all other analyses.

2) PC Population Responses From the Palm: Analyses of
responses from PCs restricted to the digits yielded gesture
classification accuracies nearly as high as those obtained from
whole-hand PC responses at all temporal resolutions (Fig. 3E),
likely due in part to the large proportion of touch contacts that
occurred at the digits in the utilized dataset. However, prior
findings have demonstrated that tactile neurons remote from the
stimulus location can encode touch information via mechanical
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wave propagation [6], [7], [21]. This motivated our subsequent
analysis of gesture encoding at various spatiotemporal scales
by PC subpopulations restricted to the palm.

Consistent with the findings from the aforementioned studies,
our results showed that gestures were readily recognized when
PCs were isolated in the palm. Average classification accuracy
was 66% in the best case (SVM, sp = P1, ∆t = 25ms)
(Fig. 3E, G). The smallest decrease in performance from whole-
hand classification occurred at fine temporal resolutions (∆t ≤
10ms) (Fig. 3F). This finding demonstrates that without the
contribution of spiking responses from PCs located in the
digits, precise spike timing played a larger role in gesture
discrimination.

Similar to whole-hand analysis results (Fig. 3B), clas-
sification accuracy varied more across changes in spatial
resolution than temporal resolution (Fig. 3H). However, the
median range of classification accuracies increased by 5%
for changes in temporal resolution while decreasing by nearly
20% for changes in spatial resolution compared to the whole-
hand analysis results for both classifiers. This finding again
indicates that the preservation of temporal structure became
more consequential for the representation of touch gestures by
PC subpopulations in the palm.

Nonetheless, spatial structure still impacted the encoding of
gesture information in the palm. Classification accuracy was
significantly higher when PC responses were integrated across
palmar regions oriented along the axis of the digits (sp = P3)
than when integrated across regions oriented orthogonal to
the digits (sp = P4), despite both sets containing an equal
number of spatial regions (M = 3) (Fig. 3G). The integration
of spikes over sp = P3 effectively preserved information about
individual digits or pairs of digits, while such preservation was
absent in the integration of spikes over sp = P4. These results
demonstrate the importance of retaining a minimal level of
digit separation within the spatial structure of the spike count
representations.

B. Varying the Spatiotemporal Resolution of Gesture-Level
Spike Count Representations

We next explored the representation of touch information
associated with individual gestures across variations in the
spatiotemporal resolution of whole-hand spike count represen-
tations. Single-digit gestures were better represented than multi-
digit gestures under most spatiotemporal conditions, except
when spatial information was eliminated (s = WH4) (Fig. 4A,
B). In addition, single-digit gestures were classified most
accurately when ∆t = 10-25ms, while multi-digit gestures
were best captured at a lower temporal resolution (∆t = 50ms).
These performance differences between gesture types may have
been a consequence of high trial-to-trial variability in the timing
of contact with the target surface or object by the individual
digits involved in the multi-digit gestures.

Additionally, we found that spatial structure played a larger
role in representing single-digit gestures, while temporal
structure was more consequential for capturing multi-digit
gestures. The median range of classification accuracies when
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Fig. 4. A) Median classification accuracy of single-digit (dark gray) and
multi-digit (light gray) gestures for all ∆t using whole-hand PC responses.
The median is computed across all s and all single- or multi-digit gestures.
B) Median classification accuracy of single-digit (dark gray) and multi-digit
(light gray) gestures for all s using whole-hand PC responses. The median
is computed across all ∆t and all single- or multi-digit gestures. C) Median
range of classification accuracies of single-digit (dark gray) and multi-digit
(light gray) gestures across changes in ∆t (left) and across changes in s (right)
using whole-hand PC responses. D) Median range of classification accuracies
of single-digit (dark gray) and multi-digit (light gray) gestures across changes
in ∆t (left) and across changes in sp (right) using PC responses from the palm.
In C) and D), when varying ∆t, the median is computed over all s or sp and
all single- or multi-digit gestures. Similarly, when varying s or sp, the median
is computed over all ∆t and all single- or multi-digit gestures. E) Confusion
matrix showing the percent of each gesture (True) classified as another gesture
(Predicted) for the best-performing classifier (SVM, s = WH1, ∆t = 25ms)
using whole-hand PC responses. Per-gesture classification accuracy is read
from the diagonal of the matrix. False positives are read from the columns,
and false negatives are read from the rows.

varying spatial resolution was greater for single-digit gestures,
while the median range when varying temporal resolution was
slightly greater for multi-digit gestures (Fig. 4C). This trend was
preserved for PC responses from the palm (Fig. 4D). Though
spatial structure still played a significant role in encoding
multi-digit gestures, it was more beneficial for representing
single-digit gestures.

For the best-performing classifier (SVM, ∆t = 25ms,
s = WH1), most misclassifications occurred between cylinder
grasps (Grasp C1 {I,II} and Grasp C2 {I,II}) and between
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gestures requiring most or all of the digits (Tap {II,III,IV,V},
Tap All, and Grasp Ball All) (Fig. 4E). Cylinder grasps were
commonly confused because they were identical apart from the
cylinder sizes, varying in radius by only 1.6 cm. Misclassifica-
tions also occurred between single-digit tapping gestures and
between Slide II and cylinder grasps. PC population responses
in the palm contained less information enabling the distinction
between multi-digit gestures and their component single-digit
gestures. This was demonstrated by misclassifications between
Tap {II,III} and its corresponding single-digit gestures Tap
II and Tap III and between the cylinder grasps and their
constituent single-digit gestures Tap I and Tap II. Further
misclassifications occurred between multi-digit taps and grasps.

IV. DISCUSSION AND CONCLUSION

Our work investigated the spatiotemporal organization of
touch information in PC population spiking responses elicited
during common touch gestures. We examined the amount of
gesture information preserved within the responses at different
spatiotemporal scales via a novel vibrometry-driven neural
simulation method adapted from prior research [1], [2], [32].
The elicited PC population responses were spatiotemporally
integrated and analyzed using several machine learning tech-
niques. Our results showed that the spatial structure of PC
population responses played a significant role in encoding in-
formation about touch gestures, especially single-digit gestures.
The temporal structure of PC population responses was also
meaningful, particularly for PCs in the palm.

While these findings necessarily reflect the scope of the
included gestures, which do not capture the full range of manual
interactions involved in all activities, they nevertheless furnish
insight into the spatiotemporal organization of natural touch
information in PC population responses in conditions with
greater ecological validity than are generally probed in many
laboratory experiments. The analyzed dataset included several
multi-finger tapping and grasping gestures and many gestures
engaging one or two digits. The selection of gestures was
informed by prior studies demonstrating that the majority of
natural contact events occur at the fingertips [38]. Our findings
suggest that the relative importance of temporal structure in
touch information encoding within PC population responses
may have been enhanced if the analyzed dataset placed greater
emphasis on grasping or multi-digit gestures.

Although the methods employed here are approximate, few
alternatives are available since existing methods preclude the
measurement of neural population responses in the periphery
during natural touch behavior. Multiple classification meth-
ods and parameters were employed to validate the findings
presented here. Despite variations between results obtained
with different classifiers, which may reflect differences in their
expressive capacity, qualitatively similar findings were obtained
from different classification techniques. In addition, results
were consistent across changes in PC population size for all
spatiotemporal parameters. Moreover, the spatiotemporal spike
count representations employed for classification analysis con-

densed the raw spiking data without the need for intermediary
assumptions or dimensionality reduction techniques.

The findings of our study are generally consistent with prior
research on the neural processing of tactile inputs and attributes
of somatosensory representations in the periphery and brain.
Highlighting the role of spatial structure in tactile encoding,
studies have shown that representations of different digits in
the primary somatosensory cortex (S1) have distinct spatial
properties, with larger areas dedicated to the digits that are most
sensitive and agile, such as the thumb and index finger [39].
Recent work has also indicated that biomechanical coupling
in the hand facilitates a hierarchical organization of tactile
information in a gradient from fine (individuated digits) to
coarse (whole-hand) spatial representations [2]. Though the
correspondence of those findings to representations in the brain
remains unclear, they point to the utility of spatial structure
in peripheral tactile processing. Our results further underscore
the importance of digit-specific spatial structure in peripheral
neural representations of tactile interactions.

Prior research has also shown that tactile neurons in the
periphery and S1 exhibit a high degree of temporal precision,
demonstrating the role of temporal structure in the encoding
of touch events [21], [40]. Additionally, our results reflected
dependence on the gesture or action being represented, aligning
with prior research showing that the involvement of spatial
and temporal information in somatosensory processing is task
and stimulus-dependent [22], [24], [25]. Furthermore, prior
studies have demonstrated that tactile neurons terminating at
locations far from the location of skin-object contact can encode
information about haptic properties, such as surface roughness,
due to biomechanical coupling in the skin [4], [6], [7]. Those
observations support our findings that substantial information is
contained in responses of PC populations in palmar areas and
highlight the potential significance of biomechanical coupling
in tactile information encoding.

It is important to note that several of the aforementioned
studies reflect the processing of peripheral spiking inputs from
multiple mechanoreceptive pathways within the dorsal column
and effects of cortical processing in S1 [41]–[43], which were
not accounted for in our study. Further analysis is needed to
relate our findings to research on the spatiotemporal organi-
zation of touch information in early and cortical processing.
Nonetheless, our results underline the significance of spatial
and temporal organization at multiple scales for the peripheral
neural processing of tactile information.

The methodology applied here illustrates how mechanisms
of tactile information processing can be investigated through
the combination of mechanical measurements and neural
simulations. Our findings may inform the development of
novel computational models of tactile information encoding
by populations of sensory neurons and contribute to the
engineering of technologies for haptic feedback or robotic
touch sensing [33]–[36]. Future studies may incorporate other
mechanoreceptive neuron types (SA1 and RA), larger datasets
of natural touch interactions, or analysis techniques drawn from
other areas of sensory neuroscience [44], [45].
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[45] G. v. Békésy. Human skin perception of traveling waves similar to
those on the cochlea. The Journal of the Acoustical Society of America,
27(5):830–841, 1955.

189


